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We consider laminar high-Reynolds-number flow through a finite-length planar
channel, where a portion of one wall is replaced by a thin massless elastic membrane
that is held under longitudinal tension T and subject to a linear external pressure
distribution. The flow is driven by a fixed pressure drop along the full length of the
channel. We investigate the global stability of two-dimensional Poiseuille flow using
a method of matched local eigenfunction expansions, which is compared to direct
numerical simulations. We trace the neutral stability curve of the primary oscillatory
instability of the system, illustrating a transition from high-frequency ‘sloshing’
oscillations at high T to vigorous ‘slamming’ motion at low T . Small-amplitude
sloshing at high T can be captured using a low-order eigenmode truncation involving
four surface-based modes in the compliant segment of the channel coupled to
Womersley flow in the rigid segments. At lower tensions, we show that hydrodynamic
modes increasingly contribute to the global instability, and we demonstrate a change
in the mechanism of energy transfer from the mean flow, with viscous effects being
destabilizing. Simulations of finite-amplitude oscillations at low T reveal a generic
slamming motion, in which the flexible membrane is drawn close to the opposite
rigid wall before recovering rapidly. A simple model is used to demonstrate how fluid
inertia in the downstream rigid channel segment, coupled to membrane curvature
downstream of the moving constriction, together control slamming dynamics.
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1. Introduction
Throughout physiology there are numerous examples of flexible fluid-conducting

vessels, such as blood flow in circulatory systems and gas and liquid flows in lung
airways. Under certain conditions, the internal flow can be strongly coupled to
deformation of the vessel, giving rise to nonlinear flow resistance properties (such as
flow limitation in forced expiration) and instabilities manifested as Korotkoff noises
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Figure 1. The two-dimensional analogue of a Starling resistor. Flow is driven by a fixed
pressure drop p0 through a channel, one wall of which contains a compliant massless membrane
under external pressure pe .

during sphygmomanometry and various respiratory sounds (wheezing from bronchial
airways, snoring from the pharynx, vocalization from the larynx and birdsong from the
syrinx) (see Grotberg & Jensen 2004; Thomson, Mongeau & Frankel 2005; Bertram
2008; Elemans et al. 2009; Dempsey et al. 2010). These applications raise some
fundamental questions in fluid–structure interaction, such as: what are the mechanisms
that drive instabilities; how, and to what extent, are instabilities in a compliant vessel
coupled to distant regions of the flow domain; and what factors might regulate
transient opposite-wall contact during an oscillation (e.g. during phonation)? The
Starling resistor is a bench-top device, commonly used to investigate such questions,
in which a flow is driven through a length of externally pressurized flexible tube
that is mounted between two rigid pipes (Knowlton & Starling 1912). Vigorous self-
excited oscillations are readily observed and have been mapped out in detail (Bertram,
Raymond & Pedley 1990). However, despite the resistor’s long history, many aspects
of its dynamics remain poorly understood. We investigate these issues here through
a theoretical study of a two-dimensional analogue of the Starling resistor (figure 1),
a finite-length channel with a segment of one wall replaced by a massless tensioned
membrane.

Early models of collapsible-tube flows have been reviewed elsewhere (Pedley &
Luo 1998; Heil & Jensen 2003; Grotberg & Jensen 2004). Briefly, they may be
classified either as studies of the full Starling resistor, accounting for the finite
length of the system and the presence of rigid segments, or as studies of the local
instabilities arising in spatially homogeneous flexible tubes or channels. Among the
former category, models have progressed in sophistication from zero to three spatial
dimensions. Low-dimensional models, which are relatively tractable (often at the
expense of accuracy), have been successful in identifying basic physical mechanisms
and in providing valuable overviews of parameter space. These have recently been
complemented by more sophisticated two- and three-dimensional simulations that
capture unsteady interactions between internal Navier–Stokes flows and a deforming
elastic boundary (e.g. Luo & Pedley 1996; Luo et al. 2008; Heil & Boyle 2010).

Simulations of the flow in the two-dimensional Starling resistor analogue (figure 1),
using boundary conditions of prescribed pressure or flux at either end of the channel,
have revealed multiple modes of oscillation, which may be classified kinematically by
the number of spatial extrema in the disturbance to the membrane location. Luo &
Pedley (1996) showed how, when the membrane is subject to uniform external pressure
(forcing it to adopt a non-uniform base state) and the upstream flux is prescribed,
mode 2 oscillations can arise that are strongly coupled to a train of internal ‘vorticity
waves’ downstream of the flexible segment; their role in the mechanism of instability
is yet to be fully established. Luo et al. (2008) later showed the co-existence of modes
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2–4 across distinct ranges of parameter space. Jensen & Heil (2003) demonstrated the
existence of a mode 1 oscillation (with a single-humped membrane disturbance) that
arises when the membrane is under high tension (and therefore has an approximately
uniform base state); using an analytical model, they demonstrated that this high-
frequency mode requires the upstream pressure (and not flux) to be prescribed and
that the upstream rigid channel segment should be shorter than that downstream,
a result confirmed in further simulations by Liu et al. (2009). While this kinematic
modal classification of global modes is useful empirically, it may mask distinct
physical mechanisms of instability, necessitating the use of approaches that probe the
underlying dynamics.

At present, only one mechanism of global instability in the two-dimensional
Starling resistor analogue is well characterized in fundamental terms, namely the
high-frequency mode 1 ‘sloshing’ oscillation described using high-Reynolds-number
asymptotics by Jensen & Heil (2003). This has also been captured using an
approximate one-dimensional model of the same system by Stewart, Waters & Jensen
(2009) and three-dimensional asymptotics and simulation for a non-axisymmetric tube
by Heil & Waters (2008) and Whittaker et al. (2010a ,b,c,d ). Despite the increased
complexity in higher dimensions, a common physical mechanism emerges. The channel
(or tube) has an inviscid normal mode, in which transverse oscillations of the wall
generate axial sloshing motions of the internal fluid; the frequency of oscillations
is set by a balance between wall elasticity and fluid inertia. Provided the upstream
supporting rigid segment is short, and the upstream pressure (rather than flux)
is prescribed, sloshing is more vigorous at the upstream end of the system. In
the presence of a mean flow, time-averaged sloshing motions can transport kinetic
energy: if the sloshing is more vigorous upstream than downstream, it is possible for
the normal mode to extract sufficient energy from the mean flow to overcome viscous
losses arising through oscillations and adjustments to the mean flow. Asymptotic
predictions of critical Reynolds numbers at which this global instability can grow
have been validated against simulations capturing the full flow–structure interaction
in both a two-dimensional flexible channel (Jensen & Heil 2003; see also figure 3a)
and a three-dimensional elliptical tube (Whittaker et al. 2010b), in the limit in which
the longitudinal tension is sufficiently large for the internal sloshing flow to have an
inviscid core surrounded by thin Stokes layers. The relevance of this mechanism to
instabilities arising at lower longitudinal tensions (and hence lower frequencies) is a
question we address below.

It is instructive to interpret the high-frequency global sloshing instability in terms
of the underlying local modes of instability of the Poiseuille flow in homogeneous
tubes or channels. These are either hydrodynamic modes, which may be perturbed by
the presence of a flexible wall, or ‘surface-based’ or ‘wall’ modes, which exist only in
flexible channels or tubes. Among the former group, we highlight two in particular:
the Tollmien–Schlichting (TS) mode, which becomes unstable at sufficiently high
Reynolds number (albeit much higher than values used in the simulations mentioned
above) and which is a likely candidate for the vorticity waves observed by Luo &
Pedley (1996); and, in a rigid channel, the ‘Womersley’ mode, corresponding to an
axially uniform oscillatory flow, the two-dimensional analogue of the unsteady pipe
flow described by Womersley (1955). For a channel having one wall rigid and the
other a massless membrane, the wall modes are either ‘static divergence’ (SD) or
‘travelling-wave flutter’ (TWF) (following Carpenter & Garrad 1985, 1986): while SD
is stable (in the absence of wall damping), TWF is long-wave unstable at all non-zero
Reynolds numbers (Stewart, Waters & Jensen 2010b). Whereas TWF in a symmetric
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flexible channel becomes unstable at high Reynolds numbers through the action of
internal critical layers (Davies & Carpenter 1997) via a mechanism first identified
by Miles (1957), in an asymmetric channel (as in figure 1), TWF is able to extract
energy from the mean flow through viscous effects operating at an unusual ‘weak’
critical layer at the channel centreline (Stewart et al. 2010b), where the wave speed
marginally exceeds the maximal speed of the parabolic base flow. We do not consider
here additional flutter modes associated with membrane inertia.

High-frequency mode 1 sloshing in a two-dimensional channel was decomposed into
its fundamental local components by Stewart et al. (2009), using a one-dimensional
model. At small amplitudes, the global mode was shown to be a combination
of Womersley modes in each rigid segment of the channel, coupled to a linear
combination of the four wall modes in the compliant segment (i.e. upstream- and
downstream-propagating SD and TWF). It was shown how the global mode can grow
in time even when each local mode decays as it propagates up or down the compliant
segment; global growth arises through wave reflections at the boundaries between the
flexible and rigid segments. Because SD and TWF have simple asymptotic structures
at high frequencies (an inviscid core flow with thin Stokes layers; Stewart et al.
2010b), the same modal combination was therefore captured (albeit implicitly) in the
two-dimensional analysis of high-frequency sloshing by Jensen & Heil (2003). This
remarkably simple representation of high-frequency sloshing (as a sum of four local
wall-based eigenmodes in the compliant segment coupled to single Womersley modes
in the rigid segments) has, in part, made it possible to capture this global mode
asymptotically in three dimensions (Whittaker et al. 2010b).

The primary purpose of this paper is to extend this approach to determine
how a wider class of global modes of the two-dimensional Starling resistor
analogue (figure 1) might be represented in terms of expansions of underlying local
eigenmodes. Having outlined the model (§ 2), in § 3.1 we solve Orr–Sommerfeld
problems to characterize the full spectra of local modes in both the rigid and
compliant channel segments, without making any long-wavelength or high-frequency
approximations. We then build truncated modal expansions in each segment,
matching these across junctions using a formalism proposed by Manuilovich
(2004); this is better suited to the present problem than the wave-driver approach
of Sen et al. (2009). In addition to recovering small-amplitude, high-frequency
sloshing, we use this approach in § 4 to track the mode 1 neutral curve to
relatively low Reynolds numbers (and low frequencies), demonstrating how
hydrodynamic modes contribute increasingly to the global instability. This approach
captures flow disturbances that propagate into the downstream rigid segment and
reveals how locally generated instabilities (such as TWF) might contribute to global
instability. We examine the energy budget of the neutrally stable modes (key balances
are derived in § 3.3) to identify the mechanism of energy transfer between the mean
flow and the perturbation and to assess the accuracy of the modal expansions.
The accuracy of the modal expansions is also tested in § 4 against fully nonlinear
two-dimensional numerical simulations of the coupled fluid and solid mechanics
undertaken using the oomph-lib framework (§ 3.2, Heil & Hazel 2006) (oomph-lib
is available as open-source software from http://www.oomph-lib.org), and against
predictions of an existing one-dimensional model (Stewart et al. 2009). Additional
simulations (presented in § 5 and as an animation in the supplementary material,
available at journals.cambridge.org/flm) reveal that, at lower Reynolds numbers,
finite-amplitude mode 1 oscillations grow exponentially before saturating to a large-
amplitude limit cycle, during which they exhibit vigorous but short-lived ‘slamming’
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motion, in which the membrane briefly comes into near contact with the opposite
rigid wall. We present a reduced model to understand this near-singular behaviour,
which again shows strong coupling between the flexible and rigid parts of the system.

2. The model
We consider a long rigid channel of width a and length L0. A section of length

aL of one wall of the channel is replaced by a thin elastic membrane subject to
an external pressure pe (figure 1). This membrane is held under longitudinal tension
T0. A Newtonian fluid, of density ρ and viscosity µ, is driven along the channel
by a fixed pressure difference. We do not attempt to model in detail the manner in
which pressure boundary conditions might be implemented experimentally; instead
we either assume zero pressure at the downstream end of the channel and constant
pressure p0 at the upstream end, or else we implement equivalent traction boundary
conditions in simulations (see § 3.2).

As in Jensen & Heil (2003), we introduce a velocity scale U0 = p0a
2/(12µL0) and

non-dimensionalize by scaling all lengths on a, time on a/U0 and pressure on ρU 2
0 .

The lengths of the upstream and downstream rigid sections of the channel are aL1

and aL2, respectively, so that L0 = a(L + L1 + L2). We define a Cartesian coordinate
system, measuring x, the distance along the channel, from the intersection of the
upstream rigid section and the flexible wall and y as the distance from the rigid wall.
In 0 � x � L, the compliant wall lies at y = h(x, t), such that h(0, t) = h(L, t) = 1. We
denote the fluid velocity field by u = (u, v) and the pressure by p. Incompressible fluid
motion in the channel is governed by the two-dimensional Navier–Stokes equations
(subscripts x, y and t denote derivatives; other subscripts do not):

ux + vy = 0, (2.1a)

ut + uux + vuy = −px + R−1(uxx + uyy), (2.1b)

vt + uvx + vvy = −py + R−1(vxx + vyy). (2.1c)

The model has five dimensionless parameters,

R =
ρaU0

µ
, T =

T0

aρU 2
0

, L, L1, L2, (2.2)

where R is the Reynolds number and T the dimensionless longitudinal tension.
We denote the non-dimensional driving pressure at x = −L1 by pu, where

pu = p0/
(
ρU 2

0

)
= 12(L + L1 + L2)/R. (2.3)

The system admits steady, unit-flux Poiseuille flow along the channel when h = 1,
which takes the form

u = (U (y), 0) ≡ (6y(1 − y), 0), p = P (x) ≡ pu − (12/R)(x + L1). (2.4)

We impose the non-uniform external pressure distribution

pe(x) = P (x) (2.5)

to ensure that there is no pressure difference across the flat membrane.
We apply no-slip and no-penetration conditions along the rigid portions of the

channel. Across the membrane we apply no-slip and kinematic conditions:

u = 0, v = ht (y = h). (2.6)

The membrane is described using two essentially equivalent formulations. In
computations (see § 3.2), we employ geometrically nonlinear Kirchhoff–Love beam
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theory (with the strain and bending tensors depending nonlinearly on the
displacements) and assume incrementally linear elastic behaviour, characterized by an
effective Young’s modulus. The beam is assumed to have thickness h and is subject
to a (dimensional) pre-stress T0/h. This formulation is exactly as given in Jensen &
Heil (2003) and is implemented in the oomph-lib library (Heil & Hazel 2006). For
ease of analysis, we also adopt a simpler approximation, which avoids the need to
track Lagrangian wall elements and neglects bending and stretching effects. Provided
L � RT , axial gradients in tension induced by viscous shear stresses are negligible;
the shape of the membrane is then determined by a normal stress balance, which
takes the form

p = pe(x) − T hxx, (2.7)

assuming that membrane slopes are sufficiently small for the curvature to be linearized.
The viscous component of the normal stress vanishes due to the boundary conditions
(2.6).

The energy equation corresponding to (2.1) is

1
2
(u2 + v2)t + 1

2
(u(u2 + v2)x + v(u2 + v2)y)

= −(up)x − (vp)y + R−1(u∇2u + v∇2v). (2.8)

The corresponding energy budget, averaging across the channel and along each
segment, can be written as a sum of five components in the form

K + E = P + F − D, (2.9a)

where

K(t) =
d

dt

(∫ L+L2

−L1

∫ h

0

1

2
(u2 + v2) dy dx

)
, (2.9b)

E(t) =

∫ L

0

(vp)
∣∣∣
y=h

dx, (2.9c)

P(t) = −
[∫ 1

0

up dy

]x=L+L2

x=−L1

, (2.9d )

F(t) = −
[∫ 1

0

1

2
u(u2 + v2) dy

]x=L+L2

x=−L1

, (2.9e)

D(t) = −R−1

∫ L+L2

−L1

∫ h

0

(u∇2u + v∇2v) dy dx. (2.9f )

Here, K is the net rate of change of kinetic energy, E is the rate of working of pressure
forces across the membrane, F is the net kinetic energy flux, P is the rate of working of
streamwise pressure forces and D is the rate of energy loss due to viscous dissipation.
In the base state (2.4), K = E = F = 0 and P = D = −(12/R)(L + L1 + L2).

For later use we define the fluid vorticity as η = vx − uy . In addition, we denote the
fluid flux along each segment of the channel by

q(x, t) =

∫ h

0

u dy, (2.10)

taking h = 1 in the rigid compartments. It is convenient to recall the one-dimensional
approximation of the present system derived by Stewart et al. (2009). The governing
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equations are simplified first by taking a long-wave approximation (assuming that
L � 1, with L1 and L2 of comparable magnitude to L) and then by assuming a
parabolic velocity profile u = 6qy(h − y)/h3; this enables (2.1b) to be integrated in y

to give coupled partial differential equations for the membrane location h(x, t) and
axial flux q(x, t), which, in the present notation, are

ht + qx = 0, (2.11a)

qt +
6

5

(
q2

h

)
x

= T hhxxx +
12

R

(
h − q

h2

)
(0 � x � L). (2.11b)

The same approach yields the following boundary conditions representing flows in
the rigid upstream and downstream segments:

h = 1, T hxx = L1[12R−1(q − 1) + qt ] (x = 0), (2.11c)

h = 1, T hxx = −L2[12R−1(q − 1) + qt ] (x = 1). (2.11d )

The one-dimensional model (2.11) is tested against two-dimensional simulations below.

3. Methods
We study the stability of the uniform base state using two complementary

approaches. In § 3.1 we construct neutrally stable global modes of the linearized
problem as a truncated expansion of the underlying local eigenmodes. In § 4 these
are compared to two-dimensional simulations of the full nonlinear problem treating
the fluid and solid mechanics exactly, using a computational scheme outlined in § 3.2.
In § 3.3 we present various representations of the energy budget, including one that
provides a test of the accuracy of the modal expansions.

3.1. Linear stability: modal analysis

We perturb the base state (2.4) by expanding the variables in the form

(u, v, p, h) = (U (y), 0, P (x), 1) + θ(u1, v1, p1, h1) + θ2(u2, v2, p2, h2) + · · · , (3.1)

where θ � 1. Equations (2.1) at O(θ) reduce to

u1,x + v1,y = 0, (3.2a)

u1,t + Uu1,x + Uyv1 = −p1,x + R−1(u1,xx + u1,yy), (3.2b)

v1,t + Uv1,y = −p1,y + R−1(v1,xx + v1,yy), (3.2c)

subject to

u1 = 0, v1 = 0 (y = 0, −L1 < x < L + L2), (3.2d )

u1 = −Uy(1)h1, v1 = h1,t (y = 1, 0 < x < L), (3.2e)

u1 = 0, v1 = 0 (y = 1, −L1 < x < 0, L < x < L + L2). (3.2f )

The normal stress balance across the membrane (2.7) takes the form

p1 = −T h1,xx (y = 1, 0 < x < L). (3.2g)

Given (3.2), the energy equation (2.8) in each compartment at O(θ) cancels trivially.
The O(θ2) energy budget is considered in § 3.3.

We consider the vector of flow quantities q(x, y, t) = [u1, v1, p1, η1]
T, dropping the

subscript 1 in the remainder of § 3.1. We assume time dependence of the form

q(x, y, t) = Aq̂(x, y; ω)e−iωt + A∗q̂∗(x, y; ω)eiωt , (3.3)
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where ω is a real frequency (as appropriate for neutrally stable oscillations), A a
complex amplitude and ∗ a complex conjugate. We then express spatially growing or
decaying modes as q̂(x, y; ω) = q̃(y; k, ω)eikx , where k is a complex wavenumber. We
first determine k as a function of ω in the rigid and compliant segments. Then, by
matching eigenfunction expansions across the junctions at x = 0 and x = L, we seek
conditions on R and T for global neutrally stable modes to exist.

3.1.1. Local eigenmodes in the rigid segments

We first consider the case k �= 0. Dropping tildes, the stability problem (3.2a–d , f )
in the rigid segments of the channel becomes

Lq ≡ L

⎡
⎢⎢⎢⎣

u

v

p

η

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

uy − ikv + η

vy + iku

py − iωv + ikUv − ikηR−1

ηy + R(ikp − iωu + ikUu + Uyv)

⎤
⎥⎥⎥⎦= 0, (3.4a)

subject to boundary conditions

u(0) = u(1) = 0, v(0) = v(1) = 0. (3.4b)

For numerical purposes, (3.4) is expressed in terms of a streamfunction φ as

u = φy, v = −ikφ, (3.5a)

p = (ikR)−1(φyyy − k2φy) − (U − ω/k)φy − Uyφ, η = k2φ − φyy, (3.5b)

which leads to the Orr–Sommerfeld equation (Schmid & Henningson 2001)

(U −ω/k)(φyy −k2φ)−Uyyφ − (ikR)−1(φyyyy −2k2φyy +k4φ) = 0 (0 < y < 1), (3.6a)

φ(0) = φ(1) = 0, φy(0) = φy(1) = 0. (3.6b)

Following Manuilovich (2004), we define the inner product as

〈 f , g〉 =

4∑
j=1

∫ 1

0

fjgj dy. (3.7)

The corresponding adjoint problem is

L†q† ≡ L†

⎡
⎢⎢⎢⎣

u†

v†

p†

η†

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

−u†
y + ikv† − iωRη† + ikRUη†

−v†
y − iku† + i(k − ω)p† + RUyη

†

−p†
y + ikRη†

−η†
y + u† − ikp†R−1

⎤
⎥⎥⎥⎦= 0, (3.8)

subject to boundary conditions

p†(0) = p†(1) = 0, η†(0) = η†(1) = 0, (3.9)

ensuring that 〈q†, Lq〉 = 〈L†q†, q〉. The adjoint solution can also be expressed using
a streamfunction φ†, where

u† = φ†
yy − k2φ†, v† = (ik)−1(φ†

yyy − k2φ†
y) − R(U − ω/k)φ†

y, (3.10a)

p† = ikRφ†, η† = φ†
y, (3.10b)
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which satisfies

(U − ω/k)(φ†
yy − k2φ†) + 2Uyφ

†
y − (ikR)−1(φ†

yyyy − 2k2φ†
yy + k4φ†) = 0 (0 < y < 1),

(3.11a)

φ†(0) = φ†(1) = 0, φ†
y(0) = φ†

y(1) = 0. (3.11b)

We formulate the orthogonality properties of eigenmodes of L and L† by
considering any two eigenfunctions qm and q†

n, which, respectively, satisfy (3.4) and
(3.8) (with corresponding eigenvalues km and kn), and the inner product

〈q†
n, Lqm〉 − 〈L†q†

n, qm〉 = 0, (3.12)

which follows directly from the definition of the adjoint. Integration by parts leads to

(km − kn)

∫ 1

0

(umv†
n + vm(Up†

n − u†
n) − R−1ηmp†

n + R(pmη†
n + Uumη†

n)) dy = 0. (3.13)

Thus, for disturbances of fixed frequency ω, the eigenvalues k of the regular system
(3.4) and the adjoint system (3.8) must coincide (Schmid & Henningson 2001) and
we have the orthogonality condition∫ 1

0

(umv†
n − vmu†

n + Uvmp†
n − R−1ηmp†

n + R(pmη†
n + Uumη†

n)) dy = Cδnm, (3.14)

where C is an arbitrary constant which depends on n. Using notation similar to
Manuilovich (2004), (3.14) can be written as

〈q†
n, Hqm〉 = Cδnm, (3.15)

where

H =

⎡
⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 U 0 −R−1

UR 0 R 0

⎤
⎥⎥⎥⎦. (3.16)

We now turn to the case k = 0. As the rigid segments are of finite length, the system
admits the planar analogue of the Womersley flow in a rigid tube (Womersley 1955).
The linearized Navier–Stokes equations reduce to −iωu = −px + R−1uyy , py = 0,
subject to u(0) = u(1) = 0, which can be solved to give

p(x) = Ā(x + B̄), u(y) = −ω−1pxZ(y), v(y) = 0, η(y) = iω−1pxZy(y), (3.17a)

where Ā is a normalization constant, B̄ is defined by the global boundary conditions,
m ≡ exp(−iπ/4)(Rω)1/2 and

Z(y; m) ≡
(

1 − sinh(m(1 − y)) + sinh(my)

sinh(m)

)
. (3.17b)

The corresponding adjoint under the inner product (3.7) takes the simple form

u† = 0, v† = D, p† = 0, η† = 0, (3.18)

where D is a normalization constant which can be chosen as unity without loss of
generality.

For n = 1, 2, . . . , the wavenumbers of the hydrodynamic modes at fixed frequency
ω satisfying (3.4) and (3.6) are denoted by kr,n (r for rigid); we label the corresponding
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Figure 2. Local modes in the (a) rigid and (b) compliant segments of the channel, for
T = 100, R = 183.1 and ω = 0.3557. The terms (u) and (d), respectively, denote upstream-
and downstream-propagating modes.

eigenfunctions with the subscript u (d) for the flow in the upstream (downstream)
rigid segment. The eigenvalues and eigenfunctions are computed using a Chebyshev
spectral method similar to that discussed by Stewart et al. (2010b) and summarized
in Appendix A.1. The eigenvalue spectrum for a typical point in parameter space is
illustrated in figure 2(a), with eigenvalues labelled as shown. Furthermore, ‘0’ denotes
the Womersley mode, ‘1’ the least damped upstream-propagating mode and ‘2’ the
corresponding downstream-propagating mode with negative real part; remaining
modes are ordered by increasing imaginary part. By continuation in R, we can
identify mode ‘6’ as the TS mode.

We then express the flow in the rigid compartments of the channel as modal
expansions of the form

qu(x, y; ω) = cu,0qu,0(x, y) +

∞∑
j=1

cu,j qu,j (y)eikr,j x (−L1 < x < 0), (3.19a)

qd(x, y; ω) = cd,0qd,0(x, y) +

∞∑
j=1

cd,j qd,j (y)eikr,j x (L < x < L + L2), (3.19b)

where cu,j and cd,j are unknown constants, which can be complex. Modes qu,0 and
qd,0 correspond to (3.17).

3.1.2. Local eigenmodes in the compliant segment

In the compliant segment, the stability problem becomes (3.4a) subject to boundary
conditions

u(0) = 0, v(0) = 0, u(1) = −Uy(1)h, v(1) = −iωh, p(1) = T hk2, (3.20)

which is expressed in streamfunction form as (3.6a) subject to

φ(0) = 0, kUy(1)φ(1) + ωφy(1) = 0, (3.21a)

φy(0) = 0, (ikR)−1(φyyy(1) − k2φy(1)) − Uy(1)−1T k2φy(1) = 0. (3.21b)

This is the undamped version of the local stability problem studied by Stewart et al.
(2010b). Again the eigenvalues and eigenfunctions are generated using a Chebyshev
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spectral method (Appendix A.1). The local eigenvalue spectrum now consists of four
surface-based modes (two TWF and two SD) which we denote by ks,j (j = 1, 2, 3, 4; s

for surface-based) and infinitely many hydrodynamic modes, which, for j = 1, 2, . . . ,

we denote by kj , ordered as in the rigid segment, as illustrated in figure 2(b). The
corresponding eigenfunctions are, respectively, denoted by qs,j and qj . The Womersley
mode does not satisfy the boundary conditions in the compliant segment (3.21).

Thus, a flow in the compliant segment of the channel is expressed as a modal
expansion in the form

q(x, y; ω) =

∞∑
j=1

cj qj (y)eikj x +

4∑
j=1

cs,j qs,j (y)eiks,j x (0 < x < L), (3.22)

where the constants cj and cs,j are unknown and can be complex.
We now proceed to match the expansions from the rigid (see (3.19)) and compliant

(see (3.22)) segments together, before applying suitable global boundary conditions.

3.1.3. Matching between compartments

To make the problem numerically tractable, we truncate each of the infinite sums
in (3.19a, b) and (3.22) to M hydrodynamic modes.

Matching between compartments is straightforward when hydrodynamic modes
are ignored, as the surface-based modes in the compliant segment and the Womersley
mode in the rigid segments cannot propagate across the junctions. Jensen & Heil
(2003), implicitly using this truncation in the high-frequency limit, matched fluxes
and pressures between compartments to predict an asymptotic stability threshold for
T � 1 (illustrated in figure 3a).

However, the hydrodynamic modes propagate in all three compartments of the
channel, and upon reaching a junction a given mode is scattered into all the other
modes in both compartments either side of the junction. We capture this behaviour
following Manuilovich (2004). Continuity of q across the junction at x = 0 implies
that

cu,0qu,0 +

M∑
j=1

cu,j qu,j =

M∑
j=1

c j q j +

4∑
j=1

cs,j qs,j (x = 0). (3.23a)

We pre-multiply both sides of (3.23a) by H (see (3.16)) and take the inner product
(3.7) with the set of eigenfunctions adjoint to the rigid modes, {q†

0, q†
1, . . . , q†

M}. By
exploiting the orthogonality condition (3.15), (3.23a) can be rearranged to give

cu = Rc + R′cs, (3.23b)

where R and R′ are matrices representing the scattering of the modes in the upstream
rigid segment into the hydrodynamic and surface-based modes in the compliant
segment, respectively, and cu = (cu,0, cu,1, . . . , cu,M ), c = (c1, c2, . . . , cM ) and cs =
(cs,1, cs,2, cs,3, cs,4) are vectors of unknown coefficients. The matrices R and R′ are

Rnm =
〈q†

n, Hqm〉
〈q†

n, Hqu,m〉
(m = 1, . . . , M; n = 0, . . . , M), (3.23c)

R′
nm =

〈q†
n, Hqs,m〉

〈q†
n, Hqu,m〉

(m = 1, . . . , 4; n = 0, . . . , M). (3.23d )
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Similarly, continuity of q across the junction at x = L implies that

cd,0qd,0 +

M∑
j=1

cd,j qd,je
ikr,j L =

M∑
j=1

cj q je
ik j L +

4∑
j=1

cs,j qs,je
ik j L (x = L). (3.24a)

This can be expressed in the form

Dcd = SEc + S′Fcs, (3.24b)

where S and S′ are scattering matrices and cd = (cd,0, cd,1, . . . , cd,M ) is a vector of
unknown coefficients. D, E and F are diagonal matrices such that

D00 = 1, Dmm = eikr,mL (m = 1, . . . , M), (3.24c)

Emm = eikmL (m = 1, . . . , M), (3.24d )

Fmm = eiks,mL (m = 1, . . . , 4). (3.24e)

The matrices S and S′ take the form

Snm =
〈q†

n, Hqm〉
〈q†

n, Hqd,m〉
(m = 1, . . . , M; n = 0, . . . , M), (3.24f )

S ′
nm =

〈q†
n, Hqs,m〉

〈q†
n, Hqd,m〉

(m = 1, . . . , 4; n = 0, . . . , M). (3.24g)

3.1.4. Global boundary conditions

We require the perturbation height of the flexible membrane to be zero at the
upstream and downstream ends of the compliant segment (x = 0, x = L), which
implies that

M∑
j=1

c jh j +

4∑
j=1

cs,jhs,j = 0 (x = 0), (3.25a)

M∑
j=1

c jh je
ik j L +

4∑
j=1

cs,jhs,je
iks,j L = 0 (x = L). (3.25b)

Strictly, we also require the perturbation pressure to be zero at the extreme upstream
and downstream ends of the channel (x = −L1, x = L+L2), assuming that each rigid
segment is long enough for the flow to be unidirectional at the channel’s inlet and
outlet. Rather than enforce this exactly, we approximate this condition in the upstream
(downstream) rigid segment by suppressing all modes which are exponentially
growing upstream (downstream) by setting their coefficients cu,j (cd,j ) to zero. This
results in exponentially small pressure fluctuations at the channel ends, but prevents
wave reflections at the channel ends from contributing to the generation of global
instabilities. This is a modelling assumption that we test against simulations below.

To close, the system requires one more condition at each junction. Following
Manuilovich (2004), we match the pressure pointwise at (0, 1) and (L, 1), so that

cu,0 +

M∑
j=1

cu,jpu,j (1) =

M∑
j=1

c jp j (1) +

4∑
j=1

cs,jps,j (1) (x = 0), (3.26a)

cd,0 +

M∑
j=1

cd,jpd,j (1)eikr,j L =

M∑
j=1

c jp j (1)eik j L +

4∑
j=1

cs,jps,j (1)eiks,j L (x = L). (3.26b)
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For fixed M , these conditions are distinct from the integral matching of perturbation
pressure across the junctions in (3.23) and (3.24).

We therefore have a system of 2M + 6 equations (see (3.23a), (3.24a), (3.25) and
(3.26)) with 2M + 6 unknowns (cu ∈ �K+1, cd ∈ �M−K+1, c ∈ �M and cs ∈ �4,
assuming that we retain K exponentially decaying upstream modes and M − K

exponentially decaying downstream modes in the rigid segments). The system can
be expressed in the form Mb = 0, where M is a known matrix and b is a vector
of all the unknown coefficients. Neutrally stable global modes are computed by
searching for curves in parameter space with real frequency where det(M) = 0. To
calculate a neutrally stable solution we fix the dimensionless membrane tension T

and isolate the corresponding critical Reynolds number R = R(M)
c and frequency

ω = ω(M)
c (where Re(det(M))=Im(det(M)) = 0). Details of the procedures used are

given in Appendix A.2.
While this method of matched eigenfunction expansions provides insights into

the manner in which hydrodynamic modes contribute to global instability, it has
certain limitations as a numerical approximation. The imposition of both pointwise
(see (3.26)) and integral pressure-matching conditions, and the non-normality of the
spatial operators, can be expected to lead to ill-conditioning. Indeed, we find that for
large M , the determinant of the matrix M becomes close to zero for all values of the
parameters ω and R; some hydrodynamic modes have almost identical eigenvalues
and eigenfunctions; so M loses rank. However, we obtain useful results for M between
0 and 7 that we compare against full simulations in § 4.

3.2. Computational method

We also performed direct numerical simulations of the fully coupled fluid–structure
interaction problem with oomph-lib. For this purpose, we discretized the arbitrary
Lagrangian–Eulerian form of the two-dimensional unsteady Navier–Stokes equations
(2.1) with quadrilateral Taylor–Hood (Q2Q1) elements. One-dimensional Hermite
elements were used to discretize the equations governing the deformation of a pre-
stressed thin-walled massless Kirchhoff–Love beam. We set the wall thickness to
h/a = 1/100 to ensure that bending effects remained small and subjected the ends of
the beam to ‘pinned’ boundary conditions, fixing their positions but allowing them
to rotate freely. Time derivatives were discretized with a second-order backwards
difference (BDF2) scheme with the time step chosen so that each period contained
approximately 160 steps. The fluid mesh contained a larger number of elements near
the walls to ensure that the Stokes layers were fully resolved. Typical production runs
were performed with discretizations that involved approximately 16 000 degrees of
freedom. Selected computations were repeated with a doubled temporal and spatial
resolution to assess the mesh and time-step independence of the results.

Simulations were performed in a two-stage procedure. First, writing the external
pressure distribution (2.5) as pe(x) = P (x) + pδ , for given parameters (R and T ), we
used a displacement-control technique to compute the value of pδ required to deform
the elastic wall such that its midpoint was deflected outwards by 0.1 % of the channel
width. This slightly inflated steady configuration was then used as the initial condition
for a time-dependent simulation during which oscillations were initiated by setting
pδ = 0 for t � 0. Following the decay of initial transients, the wall performed growing
or decaying small-amplitude oscillations about the undeformed configuration. We
determined the period and growth/decay rates of these oscillations by a Levenberg–
Marquardt fit to an exponentially growing/decaying harmonic oscillation. The critical
Reynolds number Rc(T ) at which the system undergoes a Hopf bifurcation to a mode 1
oscillation was determined by interpolation. We assessed the criticality of the Hopf
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bifurcation by performing simulations with different initial amplitudes. The critical
Reynolds number was not affected by the amplitude of the initial deflection, indicating
that the bifurcation is supercritical, at least for the parameter values investigated.

3.3. Energy

As K in (2.9) is an exact time derivative and E can be written as

E =

∫ L

0

ht (pe − T hxx) dx =
d

dt

(∫ L

0

(
hpe +

1

2
T h2

x

)
dx

)
, (3.27)

the time average over the period of an oscillation (denoted with an overbar) of the
full energy budget (2.9a) can be expressed as

0 = P + F − D. (3.28)

Expanding using (3.1) to O(θ2), (2.8) can be expressed as a leading-order Reynolds–
Orr equation entirely in terms of O(θ) variables (see Appendix B):

1
2

(
u2

1 + v2
1

)
t
+ 1

2
U

(
3u2

1 + v2
1

)
x
+ (u1p1)x + (v1p1)y

− R−1(u1∇2u1 + v1∇2v1) + U (−u1u1,x − v1u1,y) = 0. (3.29)

The corresponding perturbation energy budget can then be expressed in terms of
products of first-order variables (with energy components denoted with hats) as

K̂ + Ê = P̂ + F̂ − D̂ − Ŝ, (3.30a)

where

K̂ =
d

dt

(∫ L+L2

−L1

∫ 1

0

1

2

(
u2

1 + v2
1

)
dy dx

)
, (3.30b)

Ê =

∫ L

0

(v1p1)
∣∣∣
y=1

dx, (3.30c)

P̂ = −
[∫ 1

0

u1p1 dy

]x=L+L2

x=−L1

, (3.30d )

F̂ = −
[∫ 1

0

1

2
U

(
3u2

1 + v2
1

)
dy

]x=L+L2

x=−L1

, (3.30e)

D̂ = −R−1

∫ L+L2

−L1

∫ 1

0

(u1∇2u1 + v1∇2v1) dy dx, (3.30f )

Ŝ = −
∫ L+L2

−L1

∫ 1

0

U (u1u1,x + v1u1,y) dy dx. (3.30g)

Ŝ is the rate of energy production by nonlinear Reynolds stresses. As in (3.27), Ê can
be expressed as a complete time derivative. Taking the perturbation pressure of the
global mode to be zero at the extreme upstream and downstream ends of the channel

implies that P̂ = 0. Integrating by parts, D̂ can be written as

D̂ = R−1

∫ L+L2

−L1

∫ 1

0

{(
u2

1,x + u2
1,y + v2

1,x + v2
1,y

)
− (u1u1,x + v1v1,x)x

}
dy dx

− R−1

∫ 1

0

[
u1u1,y + v1v1,y

]y=1
dx. (3.31)
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Thus, if u1,x = v1 = 0 at the entrance and exit of the channel, the exact x-derivative
in (3.31) can be eliminated, leaving a positive-definite term and one of indeterminate
signs (e.g. Domaradzki & Metcalfe 1987; Guaus & Bottaro 2007), showing how
viscous effects at the membrane can be destabilizing. Taking the time average of
(3.30), we obtain

0 = F̂ − D̂ − Ŝ. (3.32)

This relationship provides a useful independent check of the accuracy of predictions
from modal expansions, while also giving insights into the underlying physical
mechanisms.

Alternatively, we can express (2.9a) to O(θ2) (see Appendix B), writing the energy
budget so that it includes second-order variables (with energy components denoted
with breves) as

K̂ + K̆ + Ê + Ĕ = P̂ + P̆ + F̂ + F̆ − D̂ − D̆, (3.33)

where

K̆ =
d

dt

(∫ L+L2

−L1

∫ 1

0

Uu2 dy dx

)
, (3.34a)

Ĕ =

∫ L

0

(v2P )
∣∣∣
y=1

dx, (3.34b)

P̆ = −
[∫ 1

0

(Up2 + Pu2) dy

]x=L+L2

x=−L1

, (3.34c)

F̆ = −
[∫ 1

0

3

2
U 2u2 dy

]x=L+L2

x=−L1

, (3.34d )

D̆ = −R−1

∫ L+L2

−L1

∫ 1

0

(U∇2u2 + Uyyu2) dy dx. (3.34e)

From (3.30) and (3.33), it follows that

K̆ + Ĕ = P̆ + F̆ − D̆ + Ŝ, (3.35)

which has the time average

0 = P̆ + F̆ − D̆ + Ŝ. (3.36)

We see how time-averaged Reynolds stresses exchange energy between oscillations
(3.32) and steady adjustments to the mean flow (3.36). We can also take the time
average of (3.35) directly to recover the complete energy budget (3.28) truncated to
O(θ2):

0 = P̆ +
(

F̂ + F̆
)

−
(

D̆ + D̂
)
. (3.37)

Jensen & Heil (2003) showed that for neutrally stable sloshing oscillations with
L1 < L2, (3.37) is partitioned according to

D̂ ≈ 2
3
F̂, D̆ − P̆ ≈ Ŝ ≈ 1

3
F̂, F̆ � 1 as T → ∞, (3.38)

implying that two-thirds of the energy extracted from the mean flow (due to an
asymmetry in kinetic energy fluxes at either end of the compliant segment of channel)
is dissipated by oscillatory sloshing motion, the remaining third being balanced by
adjustments to the mean flow.
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Figure 3. (a) Neutral stability curve for the primary global instability showing estimates of
critical Reynolds number Rc versus membrane tension T ; (b) corresponding frequencies versus
T . Predictions using eigenfunction expansions are shown using truncations M = 7 (solid line),
M = 4 (dot-dashed line) and M = 0 (dashed line). Filled black circles correspond to predictions
of Jensen & Heil (2003) given in (4.1) and open circles correspond to two-dimensional direct
numerical simulations (DNS). Small crosses show the prediction of the one-dimensional model
(see (2.11)), from Stewart et al. (2009). Nonlinear oscillations at the point identified by + in
(a) are illustrated in figures 7 and 8.

4. Small-amplitude mode 1 oscillations
4.1. The mode 1 neutral curve

Of the five governing parameters given in (2.2), we fix L = 10, L1 = 5 and L2 = 30
(as in Jensen & Heil 2003) and focus our attention on the neutral curve R = Rc(T )
in (R, T ) parameter space across which the uniform state loses stability to mode 1
oscillations through a Hopf bifurcation. For the parameter regimes investigated in the
two-dimensional simulations, the bifurcation was always supercritical, with mode 1
becoming unstable for R > Rc. Values of Rc and the associated frequencies ωc obtained
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M T R(M)
c % error ω(M)

c T R(M)
c % error ω(M)

c

0 1000 386.2 4.2 1.3016 100 198.7 14.3 0.3590
1 1000 dnc dnc dnc 100 199.7 14.8 0.3602
2 1000 405.3 0.54 1.3027 100 210.7 21.2 0.3606
3 1000 405.3 0.54 1.3027 100 210.8 21.2 0.3606
4 1000 403.8 0.17 1.3025 100 183.1 5.2 0.3557
5 1000 402.8 0.07 1.3024 100 187.6 7.9 0.3563
6 1000 402.4 0.16 1.3024 100 182.7 5.0 0.3562
7 1000 402.4 0.16 1.3024 100 176.5 1.5 0.3547

Table 1. Predictions of critical Reynolds number R
(M)
c and frequency ω

(M)
c for a modal

truncation involving M hydrodynamic modes, computed using N = 50 Chebyshev polynomials.
The calculation labelled ‘dnc’ did not converge satisfactorily. The percentage error refers to
the relative error between Rc (determined from two-dimensional simulations) and RM

c .

from two-dimensional simulations are shown with circles in figure 3, providing a
benchmark for testing alternative approximations. The frequency of neutral mode 1
oscillations falls from high values at large T towards zero near T = 20 (figure 3b).

We first assess the convergence properties of the method of matched eigenfunctions
truncated at M hydrodynamic modes (§ 3.1), yielding predictions denoted by R(M)

c

and ω(M)
c . Table 1 illustrates the improvement in predictions achieved by increasing

M at T = 1000 and T = 100, showing the relative error in Rc compared to two-
dimensional simulations. The error is greater for smaller T , but is still under 2 % for
T = 100 with M = 7. The improvement in error with M is gradual and not always
monotonic.

To further assess the accuracy of the modal expansions, the spatial structure of
neutrally stable self-excited oscillations at T = 1000 and T = 100 for M = 7 is
illustrated in figure 4, which shows instantaneous streamlines of the perturbation
flow field at five time points over a half-period of oscillation; the background colour
map and near-vertical contours indicate the perturbation pressure. The remaining
half of the oscillation period can be inferred by symmetry. All quantities have
been normalized to ensure that the maximal height of the membrane is 0.05 at its
midpoint. In both cases shown, the streamlines vary smoothly across the junctions.
Both examples are typical sloshing oscillations, with transverse deflection of the
membrane coupled to axial flows in the rigid segments. Axial sloshing is more vigorous
in the upstream rigid segment, where there is lower total fluid inertia. Whenever the
wall comes to rest, fluid inertia drives instantaneous recirculation in the compliant
segment of the channel (0 < x < L) (figure 4a, e, f, j ); this vortex is notably absent
over much of the remainder of the oscillation. Small cross-stream pressure gradients
are evident in the compliant segment of the channel.

Returning to figure 3(a), we now compare R(0)
c (T ), R(4)

c (T ) and R(7)
c (T ) with

predictions of Rc from two-dimensional simulations. At fixed tension, there is
convergence towards the predictions from simulations as M increases. It was possible
to extend predictions of Rc to lower values of T for larger values of M , but, for
each truncation, it was not possible to track the neutral curves to the point at which
ωc → 0. However, with M = 7, the turning point in the neutral curve near T = 55 is
predicted well (for the points presented, the relative error between Rc and R(7)

c is at
most 6.3 %), whereas this feature is not caught by R(0)

c , demonstrating the importance
of hydrodynamic modes in this region of parameter space. Conversely, hydrodynamic
modes are not needed to obtain good estimates of frequencies (figure 3b).
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Figure 4. (Colour online) Left-hand panels show instantaneous perturbation streamlines of
the flow over half a period of oscillation generated using M = 7 for (a–e) T = 1000 and (f –j )
T = 100; the shading shows the pressure perturbation in the channel, over a scale indicated
by the colour map to the right of each subfigure. The corresponding wall shape is shown to
the right of each panel.

For comparison, we also show in figure 3 the asymptotic prediction of Rc and ωc

in the limit T � 1 due to Jensen & Heil (2003), given by

Rc ≈ r2
c0T

1/2, ωc ≈ βT 1/2/L2, (4.1)
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where the constants rc0 and β depend on the lengths of the channel segments. (The
parameter rc0 falls as L2 increases and increases rapidly as L2 − L1 > 0 decreases to
zero; here we do not attempt to further survey the effect of varying L1 or L2.) In
the present example, rc0 ≈ 3.469 and β ≈ 4.2915. This approximation is effectively an
M = 0 truncation involving long-wavelength, high-frequency approximations of the
SD and TWF modes in the compliant segment of the channel, and of the Womersley
mode in the rigid segments; continuity of pressure and flux are imposed across the
internal junctions. Thus, it differs marginally at large T from the M = 0 truncation
used to determine R(0)

c , which involves eigensolutions of the Orr–Sommerfeld equation
computed at finite wavenumber. Even at T = 1000, both predictions differ slightly
from two-dimensional simulations because of the neglect of hydrodynamic modes,
but nevertheless both capture the dominant behaviour well.

It is also instructive to test the predictions of the simplified one-dimensional model
of the same system (2.11), in which viscous and convective inertial effects are crudely
represented by averaging an assumed parabolic velocity profile. For T � 1, high-
frequency sloshing oscillations are predicted by the one-dimensional model (Stewart
et al. 2009), which captures ωc accurately (this being determined by a simple balance
between membrane tension and fluid inertia, see figure 3b). Inevitably, however, the
prediction of Rc is inaccurate for large T (figure 3a) as the one-dimensional model
cannot estimate the appropriate scaling for viscous dissipation in Stokes layers.
Nevertheless, at lower tensions the one-dimensional model is in surprisingly good
qualitative agreement with Rc and ωc obtained by two-dimensional simulations. This
is significant, as it lends weight to predictions of the one-dimensional model in nearby
regions of parameter space. In particular, the one-dimensional model predicts that the
neutral curve terminates at a co-dimension 2 point near T = 20 (Stewart et al. 2009), at
which the mode 1 frequency vanishes, suggesting the likelihood of a nearby homoclinic
bifurcation. The one-dimensional model also exhibits nonlinear ‘slamming’ oscillations
close to the mode 1 neutral curve (see figure 9), which we examine in more detail in § 5.

4.2. Excitation of eigenmodes

Traces in the k-plane of the hydrodynamic and surface-based eigenvalues contributing
to mode 1 neutral oscillations as T is decreased are shown in figure 5(a). Significantly,
the downstream-propagating TWF mode becomes spatially unstable as the tension
decreases (Im(k) = 0, Re(k) = 0.1541 at T ≈ 152.0, R(7)

c ≈ 196.7, ω(7)
c ≈ 0.461;

figure 5a, inset), suggesting that local instability can contribute to the global response.
Furthermore, as the frequency of the global mode approaches zero, the wavenumber
of this TWF mode approaches the origin in the k-plane (figure 5a, inset), a feature
also captured in the one-dimensional model (Stewart et al. 2009). As the membrane
tension decreases, the wavenumbers of three of the hydrodynamic modes (‘1(u)’, ‘2(d)’
and ‘7(d)’) approach values marked with crosses in figure 5(a) lying at

k = −βi, k = −β

(
± sin

6π

7
+ i cos

6π

7

)
, β ≡ (180|Ai′(0)|)3/7

(6R)1/7
. (4.2)

This triad of quasi-static modes (with ω → 0) is captured by interactive boundary-
layer theory for a flow in a rigid channel (see figure 3 of Bogdanova & Ryzhov
1983, from where (4.2) is derived); these modes also appear as poles of the Fourier
transform used by Guneratne & Pedley (2006) in their study of static instabilities in
the two-dimensional Starling resistor analogue. The remaining hydrodynamic modes
move towards the positive half of the imaginary axis in the k-plane as T decreases.

In figure 5(b–d), we trace the amplitudes of each of the local eigenfunctions
that constitute the global mode for decreasing membrane tension (with M = 7).
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Figure 5. (a) Traces of the hydrodynamic (1–7) and wall (SD and TWF) modes in the
wavenumber plane as tension is decreased along the neutral curve for M = 7 in figure 3.
The arrows indicate the direction of decreasing tension. Crosses indicate the limiting solutions
(4.2) plotted for R = 200. The symbols in the inset represent the asymptotic prediction of
the surface-based modes from Jensen & Heil (2003). (b–d) Relative amplitudes of each of the
local modes for tension decreasing along the neutral curve for M = 7 in figure 3: (b) in the
upstream rigid segment; (c) in the compliant segment (the mode labelled ‘1’ is not shown as its
amplitude is much less than all the others); (d) in the downstream rigid segment. At T = 1000,
modes are ordered by decreasing amplitude as TWF(d), TWF(u), SD(d), SD(u), 2, 6, 3, 5, 4,
7, 1 in (c), and 2, 7, 5, 6, 0, 3, 4 in (d). Labels correspond to those used in (a) and in figure 2.

In this figure, the local eigenmodes are re-normalized to have unit kinetic energy

such that (
∫ h

0
(|u|2 + |v|2) dy)/2 = 1 (although similar results are obtained under

the normalization given in Appendix A.1). The Womersley mode is dominant in
the upstream rigid segment, and the four surface-based modes are dominant in the
compliant segment. The greatest contribution in the downstream rigid segment for
all T comes from the most rapidly decaying (in x) hydrodynamic mode labelled ‘2’ in
figure 2, although this mode is not needed to predict Rc when T � 1 (Jensen & Heil
2003). As the membrane tension is decreased, other hydrodynamic modes (particularly
those labelled ‘5–7’) become relatively important; however, the TS mode (‘6’) remains
stable at these low Reynolds numbers.

4.3. Energy budget for mode 1 oscillations

Jensen & Heil (2003) identified a mechanism for sloshing oscillations at T � 1 in
terms of energy transfer, showing a remarkably simple 2:1 partition of kinetic energy
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fluxes (see (3.38)). We now seek to understand how energy budgets change at lower
tensions with hydrodynamic modes included.

The time-averaged perturbation energy budget (3.32) provides a useful method for
estimating the error in the modal approximation, arising through a combination of
truncation errors in the spectral method, matching errors across junctions and in the
application of the global boundary conditions. We denote this error by

T̂ = F̂ − D̂ − Ŝ, (4.3)

where F̂, D̂ and Ŝ are computed from truncated modal expansions. As we can expect
slight discontinuities across the junctions between rigid and compliant segments, we

evaluate F̂ using the sum

F̂ = −
[∫ 1

0

1

2
U

(
3u2

1 + v2
1

)
dy

]x=0

x=−L1

−
[∫ 1

0

1

2
U

(
3u2

1 + v2
1

)
dy

]x=L

x=0

−
[∫ 1

0

1

2
U

(
3u2

1 + v2
1

)
dy

]x=L+L2

x=L

. (4.4)

Computations indicate that F̂ remains positive along the mode 1 neutral curve,
although it falls monotonically towards zero as T decreases. We therefore illustrate

the relative error in our approximation by plotting T̂/F̂ for decreasing T (figure 6).
The relative error remains low in the limit T → ∞, but gradually increases as
hydrodynamic modes become more important at low tensions. For example with
M = 7, the relative error at T = 25.0 is 5.9 %.

The normalized perturbation rate of dissipation, D̂/F̂, and Reynolds stress, Ŝ/F̂,

are also plotted versus T in figure 6. The ratio D̂/F̂ slowly approaches 2/3 for

T � 1, which is consistent with (3.38). For sufficiently low tensions, however, D̂
becomes negative (D̂ = 0 for T ≈ 28 for M = 7), by an amount substantially larger
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Figure 7. Evolution of the membrane midpoint h(L/2, t), from two-dimensional simulations,
showing a linearly unstable mode 1 oscillation saturating to a large-amplitude limit cycle
exhibiting periodic ‘slamming’, for T = 21, R = 250, L1 = 5, L2 = 30 and L = 10.

than the error T̂ , implying that oscillatory viscous effects in the flexible channel
segment act as an energy source (see (3.31)), and suggesting a fundamental change in
the mechanism of oscillations compared to that identified by Jensen & Heil (2003).
We conjecture that this is linked to the downstream TWF mode, which is destabilized
through the action of a weak critical layer at the channel centreline (figure 5a; Stewart
et al. 2010b). In contrast, the energy exchanged between time-averaged oscillations

and the mean flow by nonlinear Reynolds stresses, Ŝ, slowly approaches F̂/3 for

T � 1 (consistent with (3.38)), but increases (relative to F̂) as T falls.
We also computed each of the terms in (2.9) by two-dimensional simulation, in

order to estimate the balance of terms in the time-averaged total energy budget (3.28).
For a given T , we considered a simulation with R ≈ Rc and computed F(t), P(t)
and D(t). Extracting a meaningful time average was difficult as the oscillation was
either slowly growing or decaying in time. For each quantity of interest, we therefore
fitted the growth of the maximal and minimal points of the oscillation separately;
using these growth rates, we then extrapolated the maximal and minimal points to
approximate the mid-line of the oscillation. We found, for example, that at T = 1000,
F ≈ 8.3 × 10−5, whereas at T = 31.6, F ≈ 3.09 × 10−6 (for the same amplitude).
While these results suggest that the time-averaged kinetic energy flux F decreases
with decreasing membrane tension, we did not see evidence of a change of sign in F.

5. Large-amplitude oscillations: ‘slamming’ motion
We now consider finite-amplitude oscillations that arise beyond the mode 1 neutral

curve. An example was given by Jensen & Heil (2003) for T = 100 and R = 450,
showing how vigorous sloshing motion excites secondary instabilities within the
channel. We highlight here a robust feature of oscillations at lower tensions, namely a
low-frequency periodic ‘slamming’ motion, which we now describe briefly using both
two-dimensional simulations (§ 5.1) and by constructing a simplified analytical model
(§ 5.2).

5.1. Nonlinear simulations

Figure 7 shows the time evolution (from two-dimensional simulation) of the midpoint
of the membrane at R = 250, T = 21 (illustrated with a cross in figure 3a),
a point beyond the threshold for instability to mode 1 oscillations. The mode 1
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Figure 8. ‘Slamming’ motion predicted using two-dimensional simulations at T = 21 and
R = 250 (as in figure 7). Left column: (a) a phase portrait showing the maximum and minimum
heights of the membrane against their corresponding spatial positions; (c) 10 membrane profiles
over a period; (e) pressure p(L, 1, t) (solid) and flux q(L, t) (dot-dashed) at the downstream
end of the compliant segment. Right column: comparison between two-dimensional simulation
(solid lines) and the reduced model (5.6) (dashed lines) around the interval of greatest collapse;
(b) time trace of the position of the membrane minimum, xmin(t) ≡ x0(t); (d) downstream flux
q(L, t); (f ) downstream pressure p(L, 1, t).

oscillation grows rapidly before saturating as a large-amplitude periodic limit cycle,
shown in figure 8 and the animation in the supplementary material. In figure 8(a),
the coordinates of local extrema of membrane displacement (xmin(t), hmin(t)) and
(xmax(t), hmax(t)) are traced out. As is evident from figure 8(a) and the solid curve in
figure 8(b), the membrane moves close to the rigid wall at a point near the downstream
end of the compliant segment, before quickly recovering, an event we describe as
‘slamming’. Simultaneously, the flux at the downstream end of the compliant segment,
q(L, t), falls close to zero and the local pressure, p(L, 1, t), falls to low values over a
short interval (see figure 8e and the solid curves in figure 8d, f ). Slamming appears
to trigger a damped oscillation in the pressure trace (six local post-slam maxima are
evident in p(L, 1, t), separated by a minimum time interval of approximately 1/10th
of a period); the accompanying animation (see supplementary material) shows the
dynamics of the full flow and pressure field in more detail.
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Figure 9. ‘Slamming’ motion predicted using the one-dimensional model (2.11) at T = 30,
R = 200. Left column: (a) a phase portrait showing the maximum and minimum heights of
the membrane against their corresponding spatial positions; (c) 10 membrane profiles over a
period; (e) cross-sectionally averaged pressure p̄ = L2(qt + 12q/R) (solid line) and flux q(L, t)
(dot-dashed line) at the downstream end of the compliant segment. Right column: comparison
between the solutions of the one-dimensional model (2.11) (solid lines) and the reduced model
(5.6) (dashed lines) around the interval of greatest collapse; (b) location of constriction x0(t);
(d) flux q(L, t) versus t; (f ) p̄ versus t .

Similar behaviour is evident in solutions of the one-dimensional model (2.11),
solved using the numerical scheme described in Stewart et al. (2009) and shown in
figure 9 for R = 200 and T = 30. (As the one-dimensional model is based on an
ad hoc closure approximation, we cannot expect quantitative agreement with two-
dimensional simulations, and indeed Rc is underpredicted by around 20 % at T = 30
in figure 3. Furthermore, nonlinear oscillations significantly beyond the neutral curve
in the one-dimensional model exhibit secondary bifurcations such as period doubling
that are sensitive to parameter choices. We therefore did not attempt to exactly match
parameters with figure 8, but have instead selected two representative examples
illustrating some common features.) The phase portraits and flux and pressure traces
in figure 9(a, c), and in the solid curves in figure 9(b, d, f ), clearly resemble figure 8,
particularly in the brief slamming phase. In this instance, the pressure trace exhibits
seven distinct local post-slam minima, again separated by minimum time interval
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of approximately 1/10th of a period. For other parameters, even more vigorous
slamming was observed. It is natural to ask what drives this near-singular behaviour.

5.2. Reduced model for ‘slamming’ behaviour

To understand the physical processes underlying a slamming event, we now build a
‘toy’ model that seeks to characterize as simply as possible its dominant qualitative
features. This approach is inspired by previous ‘lumped-parameter’ models of the
Starling resistor (Bertram & Pedley 1982; Armitstead, Bertram & Jensen 1996),
although these did not represent the effects of axial tension or axial motion of the
constriction.

We approximate the pressure in the compliant segment of the channel using (2.7).
Let the minimum height of the membrane in the compliant segment be h0(t) ≡ hmin(t),
with corresponding spatial position x0(t) ≡ xmin(t), so that hx(x0, t) = 0. In the short
region between this minimum and the junction with the downstream rigid segment
(x0 < x < L), the external pressure is uniform to leading order, pe ≈ Pe ≡ 12L2R

−1.
We assume that the internal fluid pressure p = p0(t) is also approximately uniform in
this region, so that T hxx ≈ Pe −p0 in x0 < x < L (linearizing the membrane curvature
for simplicity). When the channel is almost constricted (0 < h0 � 1), we impose the
approximate boundary conditions h = hx = 0 at x = x0 and h = 1 at x = L, implying
that

h =
(x − x0)

2

(L − x0)2
, x0 = L −

(
2T

Pe − p0

)1/2

(x0 < x < L). (5.1)

To determine the corresponding volume flux q(x, t), we use (5.1) and (2.11a);
integrating across x0 < x < L yields

q = q0 +
1

3
x0,t

(x − x0)
2

(L − x0)3
(3L − 2x − x0) (x0 < x < L), (5.2)

where q0(t) ≡ q(x0, t) is the flux through the constriction. It follows that the flux at the
downstream end of the compliant segment, and hence throughout the downstream
rigid segment, is controlled by axial displacement of the constriction: q(L, t) =
q0 + (x0,t /3). We assume for simplicity that, during the most vigorous phase of
slamming motion, q0 can be neglected relative to x0,t .

The corresponding pressure drop along the downstream rigid segment has viscous
and inertial contributions that we estimate following the approach used to derive
(2.11), recognizing the limitations of this approach in accurately capturing the
dissipation of rapidly accelerating flows. Assuming for simplicity that the flow in the
downstream segment is a uniform Poiseuille flow, u = 6qy(1 − y), the x-momentum
equation, when integrated across the channel, reduces to

qt = −px − 12R−1q (L < x < L + L2), (5.3)

from which we calculate p0 = L2(qt + 12R−1q), giving, with (5.1b), two expressions
for the pressure and an evolution equation for x0(t):

p0 = Pe − 2T

(L − x0)2
=

L2

3

[
12

R
x0,t + x0,t t

]
. (5.4)

We now use (5.4) to model one cycle of slamming motion. We let L0 be the
minimum separation between x = x0 and x = L, assumed to occur at t = t0, so that
x0,t (t0) = 0 and x0(t0) = L − L0, and then rescale using

x0 = L − L0L̆(t̆), t = t0 +
(
L3

0L2/(6T )
)1/2

t̆ , (5.5)
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so that (5.4) reduces to a two-parameter problem defined by

L̆t̆ t̆ =
1

L̆2
−

(
24L2L

3
0

R2T

)1/2

L̆t̆ − PeL
2
0

2T
, L̆(0) = 1, L̆t̆ (0) = 0. (5.6)

The corresponding physical variables are

q(L, t) = −
(

2T

3L0L2

)1/2

L̆t̆ , p(L, 1, t) = Pe − 2T

(L0L̆)2
. (5.7)

Solutions of (5.6), segments of a damped nonlinear oscillation, are plotted as
dashed curves alongside data from two-dimensional simulations in figure 8(b, d , f ),
and one-dimensional predictions in figure 9(b, d, f ), having fitted only L0 and t0.
Given the crude approximations made in deriving (5.6), we do not expect a precise
quantitative match with simulations. Nevertheless, there is reasonable qualitative
agreement between predictions of the reduced model and simulations around the
point of greatest collapse. Viscous effects, which are small for the parameter values
chosen, lead to a slight asymmetry between the advancing and receding motion of the
constriction. The term involving the external pressure Pe in (5.6) causes the oscillation
to saturate. The approximate model could be refined to include the flux q0 (which is
not determined locally), which would modify the degree of saturation and would also
account for the fact that the flow does not undergo complete reversal. However, even
without q0, the simple reduced model provides a useful physical interpretation of the
slamming motion. Downstream movement of the constriction increases the curvature
of the membrane in x0 < x < L, and is accompanied by a fall in pressure to negative
values, leading to an adverse pressure gradient in the downstream rigid segment,
decelerating the column of fluid downstream of the constriction; fluid is then driven
back into the compliant segment of the channel from the downstream end, pushing
the constriction upstream. Mass conservation implies that the constriction must move
upstream, which results in a decrease in the membrane curvature and an increase in
the fluid pressure.

Neglecting the relatively weak effects of dissipation in the downstream segment
and external pressure in (5.6a), we can interpret the system as a nonlinear spring,
with fluid inertia in the downstream segment balancing the elastic restoring force due
to membrane curvature, the two effects determining the time scale of the slamming
event via (5.5b). Lubrication effects are likely to have a role to play in inhibiting
opposite-wall contact at the constriction: when x0,t > 0 and h(x0, t) � 1, h(x0, t)
may be determined by the speed of advance of the constriction through the Landau–
Levich–Bretherton mechanism familiar from thin-film coating problems (Landau &
Levich 1942; Bretherton 1961).

6. Discussion
We have used two complementary approaches to investigate the stability of a

uniform Poiseuille flow in the two-dimensional Starling resistor analogue (figure 1),
namely a method of matched eigenfunction expansions and two-dimensional
computational simulation. We restricted attention to the primary oscillatory instability
that arises when the pressure is specified at both ends of the system, namely
mode 1 oscillations involving a single-humped disturbance to the membrane location
(examples of which are illustrated in figure 4). By evaluating predictions of the mode 1
neutral curve from truncated eigenfunction expansions against two-dimensional
simulations (figure 3), we have demonstrated how small-amplitude mode 1 oscillations
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change character as the membrane tension T is reduced. The mechanism of instability
at high T has been explained previously both at the local level (being driven by wave
reflections of SD and TWF modes at the junctions with the rigid channel segments;
Stewart et al. 2009) and at the global level (the shorter upstream rigid channel segment
enabling sloshing flows to extract energy from the mean flow via asymmetric kinetic
energy fluxes; Jensen & Heil 2003). Both levels of description must be modified to
understand mode 1 oscillations at lower T . First, the downstream-propagating TWF
component of a mode 1 oscillation can grow spatially (figure 5a, inset), showing how
a local instability mechanism may contribute to global instability through viscous
effects operating at a weak critical layer at the channel centreline (Stewart et al.

2010b). Second, and consistent with observations of the global energy budget, D̂
(the time-averaged perturbation to the rate of dissipation due to oscillatory motion)
becomes negative as T falls (figure 6), implying that viscous effects are destabilizing
through a reduction in dissipation rate. Meanwhile, Reynolds stresses, which transfer
energy from the oscillations to the mean flow, increase relatively (figure 6). The local
viscous mechanism that destabilizes TWF is potentially responsible for the global
reduction in dissipation rate as T falls: however, a simple mechanistic explanation is
hampered by the intricate spatial distribution of sources and sinks revealed by Stewart
et al. (2010b), through which energy is exchanged between perturbation dissipation
and Reynolds stresses (two of the three components in (3.32)).

It is evident from figure 3(a) that hydrodynamic modes contribute to mode 1
oscillations at lower tensions, although the dominant eigenmodes in the downstream
rigid segment are those labelled 2 and 7 (figure 5d), visible as decaying waves
in streamline plots (e.g. figure 4a, f ), rather than mode 6, the TS mode. In the
parameter regime considered here, we saw no evidence of the dramatic excitation of
vorticity waves reported in other computational studies (Luo & Pedley 1996; Luo
et al. 2008), which considered configurations with non-uniform base states, and in
experiments in channels with moving constrictions (Stephanoff et al. 1983; Pedley
& Stephanoff 1985). We have conjectured elsewhere that transient growth effects
may be responsible for the excitation and spatial localization of vorticity waves in
collapsible channel oscillations (Stewart et al. 2010a). The associated non-normality
of the spatial linear operator in (3.6) and (3.21) is also likely to limit the accuracy of
the present eigenfunction-expansion method, motivating the future use of a complete
global stability analysis (as initiated by Luo et al. 2008). Such an analysis would also
be useful in assessing the importance of pressure reflections from the extreme ends of
the channel, a feature neglected from the present modal analysis.

We are not aware of experiments that might allow us to test our predictions of the
two-dimensional Starling resistor analogue directly. While a sloshing instability has
been predicted to operate in three dimensions theoretically (the present eigenfunction-
expansion approach has been adopted with effectively an M = 0 truncation in
the long-wave, high-frequency limit by Whittaker et al. 2010b), experiments in the
appropriate parameter regime, either in a channel or a tube, are still awaited. There are,
however, previous reports that we can relate to ‘slamming’ behaviour (figures 8 and
9). This is characterized by periodic rapid drops in pressure at the downstream end of
the compliant segment (commonly denoted by p2 in experiments), followed by a quick
recovery; there is a corresponding abrupt fall of flux (denoted by q2) with a slower
recovery. Similar behaviour has been reported, for example in simulations, using
alternative one-dimensional models (Bertram, Sheppeard & Jensen 1994; Hayashi,
Hayase & Kwamura 1998). In experiments, nonlinear oscillations sharing features
with slamming have been reported as ‘LU’ oscillations (Bertram et al. 1990) and
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‘type C’ oscillations (Xia et al. 2000). However, these experiments reveal features not
seen in our simulations: for example, over the parameter regime investigated, we
did not observe ‘sucking’ behaviour in which the elastic segment is drawn into the
downstream rigid segment, as occurs when the axial pre-stress is sufficiently small
(Xia et al. 2000). Our simple analytical model (§ 5.2), describing only the brief time
interval around the spike, does not make predictions about the dynamics of the
overall oscillation, but instead seeks to explain the mechanism by which a balance
of elastic and inertial effects provide the restoring force that drives the pressure and
flux recovery. In particular, the model predicts that the time scale of the slamming
event increases with the inertia of fluid in the downstream rigid segment (the time
scale being proportional to L1/2

s in (5.5)). This is consistent with data reported in
figure 8 of Wang, Chew & Low (2009), who showed a clear increase in the recovery
time of p2 and q2 with increased downstream inertance. There are many features of
the simplified model that might be refined usefully in future studies, including using
fully nonlinear membrane curvature, representation of viscous dissipation in Stokes
layers and proper allowance for axial wall motion.

In summary, we have shown, using a combination of complementary approaches,
how hydrodynamic modes can play an important role in determining the onset of
mode 1 oscillations in collapsible channel flows, and how local viscous effects may
contribute to the growth of a global instability. We have also shown how both small-
amplitude sloshing and large-amplitude slamming oscillations involve an inviscid
interaction between elastic-wall deformations and fluid inertia, particularly that in the
rigid segments of the channel. It will be of interest to see to what extent these ideas
are relevant to more complex wall models (including dissipation and inertia) and fully
three-dimensional effects, when additional effects such as mode interactions (Mandre
& Mahadevan 2010) and symmetry-breaking bifurcations (Heil & Boyle 2010) come
into play.
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grateful to Dr R. Whittaker and Professor J. Billingham for helpful discussions.
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Appendix A. Numerical method
A.1. Spectral method for local eigenmodes

To implement the modal analysis described in § 3.1, we require the solution of the
local stability problem in both the rigid (see (3.6)) and compliant (see (3.21)) segments
of the channel, as well as the adjoint problem in the rigid segments (3.11). We use
a Chebyshev spectral method (Schmid & Henningson 2001; Peyret 2002) similar to
that described and used previously by Stewart et al. (2010b). In summary, the flow
domain (0 � y � 1) is rescaled to the numerical domain (−1 � Y � 1) using the
transformation Y = 2y − 1, Φ(Y ) = φ(y) and the streamfunction is expanded as a
series of N Chebyshev polynomials in the form

Φ =

N∑
n=0

anZn(Y ), (A 1)
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where Zn is the nth Chebyshev polynomial and an are unknown numerical coefficients.
To implement the problem numerically, we use collocation at the Gauss–Lobatto
points Yj = cos(jπ/N) for j = 0, . . . , N (Peyret 2002).

We consider disturbances of fixed real frequency ω, at a given R and T , and
examine eigenvalue spectra in the wavenumber plane, employing the companion
matrix method (Bridges & Morris 1984) to solve the nonlinear eigenvalue problem.
As the corresponding eigenfunctions are inaccurate close to the boundaries, we use
the eigenvalues generated using the companion matrix method as an initial estimate
and employ Newton iteration to identify roots of the corresponding temporal stability
problem (where the wavenumber is fixed and we consider eigenvalue spectra in the
frequency) with complex wavenumber k that have the desired real frequency ω. Since
the Reynolds numbers of the global modes under consideration are typically less
than R = 500, we found that 50 Chebyshev polynomials were sufficient to resolve
the eigenvalue spectra to the required accuracy. For each of the surface-based and
hydrodynamic modes (as well as their adjoints in the rigid segments), the vector
of spectral coefficients a1, a2, . . . , an was normalized to ensure a 2-norm of one.
The Womersley modes were calculated analytically using (3.15) and expressed at the
Gauss–Lobatto collocation points; these modes were normalized to have a pressure
of unity at the upstream and downstream junctions with the compliant segments, so
that

Ā = 1/L1, B̄ = L1 (−L1 < x < 0), (A 2a)

Ā = −1/L2, B̄ = −L − L2 (L < x < L + L2). (A 2b)

A.2. Construction of global modes

To compute global modes, we construct the matrix M using the normalized
eigenfunctions computed by MATLAB and compute the determinant numerically.
To calculate a neutrally stable solution, we fix the dimensionless membrane tension T

and use the function fminsearch in MATLAB to isolate the corresponding critical
Reynolds number R(M)

c and frequency ω(M)
c (where abs(det(M)) = 0) using a relative

error tolerance of 10−4. However, the system loses sensitivity as M increases (the
determinant of the matrix tends to zero for all values of the parameters T , R

and ω) and isolating the zeros of the real and imaginary parts of det(M) becomes
computationally more expensive. For M = 7, it was necessary to multiply the
eigenfunction by a normalization constant which increases the determinant of the
matrix without altering the zeros.

Appendix B. Energetics of neutrally stable modes
To capture the energy budget of neutrally stable oscillations using the modal

analysis of § 3.1, we look at O(θ2) disturbances in (2.1), governed by

u2,x + v2,y = 0, (B 1a)

u2,t + Uu2,x + Uyv2 + p2,x − R−1(u2,xx + u2,yy) = −u1u1,x − v1u1,y, (B 1b)

v2,t + Uv2,y + p2,y − R−1(v2,xx + v2,yy) = −u1v1,x − v1v1,y, (B 1c)
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subject to

u2 = 0, v2 = 0 (y = 0, −L1 < x < L + L2), (B 1d )

u2 = 6h2 + 6h2
1 − u1,yh1, v2 = h2,t (y = 1, 0 < x < L), (B 1e)

u2 = 0, v2 = 0 (y = 1, −L1 < x < 0, L < x < L + L2). (B 1f )

A normal stress balance determines the shape of the compliant membrane

p2 = −T h2,xx (y = 1, 0 < x < L). (B 1g)

Nonlinear Reynolds stresses on the right-hand side of (B 1b, c) force u2, v2 and
p2; in particular, if u1, v1 and p1 are periodic, then u2, v2 and p2 will have steady
components, resulting in a ‘weak’ O(θ2) change to the mean flow. The corresponding
energy equation (2.8) in the compliant segment of the channel (0 < x < L) reduces
with error O(θ2) to

1
2

(
u2

1 + v2
1

)
t
dy + 1

2
U

(
3u2

1 + v2
1

)
x
+ (u1p1)x + (v1p1)y − R−1(u1∇2u1 + v1∇2v1)

+ Uu2,t + U 2u2,x + UUyv2 + Up2,x + (u2P )x − R−1(U∇2u2 + Uyyu2) = 0, (B 2)

or equivalently, using (B 1), to the leading-order Reynolds–Orr equation (3.29). The
energy equation in the rigid portion of the channel is identical, but no work is
done across the rigid wall at y = 1 due to the no-penetration condition. Integrating
(B 2), each term in the energy budget has a term arising from the product of two
first-order variables (denoted with a hat) and a term arising from a combination of
the mean flow and a second-order variable (denoted with a breve). Thus, (2.9a) can
be written as (3.33). Following arguments presented in Stewart et al. (2010b), noting
how nonlinear Reynolds stresses appear in (3.29), we may alternatively express (2.9)
to O(θ2) independently of u2, v2 and p2 as (3.30a).
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